Journal of Animal Behaviour and Biometeorology
Journal of Animal Behaviour and Biometeorology
Research Article Open Access

Design and testing of a sweat meter for the cutaneous evaporation determination in cattle

Zoilo Andrés Correa García, Rómulo Campos Gaona, Hernando Flórez Díaz

Downloads: 1
Views: 982


The physiological processes of adaptation respond to autonomic mechanisms. Ruminants are known to regulate heat by sweating, among other mechanisms. Bos taurus cattle usually do not compensate well for exposure to high temperatures. In the tropics, sweating is the most important way for ruminants to lose heat. The objective of this research was to design and validate a non-invasive external mean to determine sweat production in Colombian Creole cattle. In a research center located in the Colombian eastern plains at 4°05´N and 73°34´E, at 330 m ASL, a simple, lightweight, operational, safe, and easy-to-use device was designed to collect sweat from bovine Planum nasolabiale in 15 lactating cows of Colombian Creole breeds. Besides, blood samples were collected and physiological constants were determined and analyzed the relationship of this parameter with physiological measurements and heat indices. The measurement device designed and tested has proven to be efficient for sweating collection in cattle; however, the quantity of sweat collected could not reflect in a trustworthy way the overall animal response to the environmental conditions. In contrast, the heat load index was more related to evapotranspiration and sweat production than the humidity temperature index, indicating that a high heat load may lead to a major need for triggering high-level regulatory physiologic mechanisms like sweat production to compensate the rise of core temperature.


Colombian Creole cattle, Colombian eastern plains, heat stress, Planum nasolabiale, sweat production


Amézquita E, Rao I, Rivera M, Corrales I, Bernal J (2013) Sistemas agropastoriles: un enfoque integrado para el manejo sostenible de oxisoles de los Llanos Orientales de Colombia. Centro Internacional de Agricultura Tropical (CIAT). pp 286-288.

Collier RJ, Baumgard LH, Zimbelman RB, Xiao Y (2019) Heat stress: physiology of acclimation and adaptation. Animal Frontiers 9:12-19.

Collier RJ, Gebremedhin KG (2015) Thermal biology of domestic animals. Annual Review of Animal Biosciences 3:513-532.

Cunningham J (1999) Fisiología Veterinaria. 2º ed. México DF. Editorial McGraw-Hill Interamericana.

Da Silva RG, Maia AC, Macedo Costa LL (2015) Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments. International Journal of Biometeorology 59: 551–559.

Dukes HH, Swenson MJ, Reece WO (1999) Fisiología de los animales domésticos de Dukes 2a ed. pp 989-1124.

Ferreira F, Campos WE, Carvalho AU, Pires MF A, Martinez ML, Silva MV, Silva PF (2009) Taxa de sudação e parâmetros histológicos de bovinos submetidos ao estresse calórico. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61:763-768.

Gaughan JB, Mader TL, Holt SM, Lisle A (2008) A new heat load index for feedlot cattle. Journal of Animal Science. doi: 10.2527/jas.2007-0305

Hahn G, Gaughan J, Mader T, Eigenberg R (2009) Thermal indices and their applications for livestock environments. Published In Livestock Energetics and Thermal Environmental Management. Chapter 5. pp 113-130. doi: 10.13031/2013.28298

IDEAM (2005) Atlas climatológico de Colombia. Bogotá: IDEAM. Accessed on: May 18, 2020

Kennedy P (1995) Comparative adaptability of herbivores to tropical environments. Recent developments in the Nutrition of Herbivores. Proceedings of the IVth International Symposium on the Nutrition Herbivores. Paris. INRA Editions pp 309-328

Lenis Y, Zuluaga AM, Tarazona AM (2016) Adaptive responses to thermal stress in mammals. Revista Médica Veterinaria, 13, 121-135.

Mader TL (2003) Environmental stress in confined beef cattle. Journal of Animal Science 81:E110-E119.

Martínez R, Gallego J, Pérez J (2009) Evaluación de la variabilidad y potencial genético de poblaciones de bovinos criollos colombianos. Animal Genetic Resources. doi: 10.1017/S1014233900002868

Parker D (1984) Limitantes metabólicos para la producción de leche en los trópicos. Tropical Animal Production 9:263-269.

Petrie A, Watson P (2013) Statistics for veterinary and animal science. Third ed. Wiley-Blackwell. Bridgewater, New Jersey. pp 102-108

Polsky L, Von Keyserlingk MA (2017) Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science. doi: 10.3168/jds.2017-12651

Randall D, Burggren W, French K (2004) Eckert Fisiología Animal. Mecanismos y adaptaciones. 4a ed. McGraw Hill. pp 385-396

Scharf B, Carroll D, Riley C, Chase J, Coleman S, Keisler D (2010) Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge. Journal of Animal Science. doi: 10.2527/jas.2009-2551

 Seebaccher F, Craig RW, Craig EF (2015) Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change. doi: 10.1038/nclimate2457

Thompson V, Fadel J, Sainz R (2011) Meta-analysis to predict sweating and respiration rates for Bos indicus, Bos taurus, and their crossbreds. Journal of Animal Science. doi: 10.2527/jas.2011-3913

Tomasi TE, Anderson BN, Garland JT (2019) Ecophysiology of mammals. Journal of Mammalogy. doi:10.1093/jmammal/gyz026

Yeates N (1976) Avances en zootecnia. Modern aspects of animal production. Editorial Acribia, Zaragoza. pp 406-417.

Submitted date:

Accepted date:

5f8d7e6d0e8825436dcb4689 jabbnet Articles
Links & Downloads

J. Anim. Behav. Biometeorol.

Share this page
Page Sections